Nonlinear signal processing methods continue to grow in popularity and use. This growth is due to one factor—performance. While it is true that linear methods continue to dominate in practice, nonlinear methods are making steady progress in moving from theoretical explorations to practical implementations. Clearly, the advances in computing performance have accelerated this progress by making nonlinear methods more practical. Additionally, nonlinear theory continues to grow and is yielding a firm foundation upon which nonlinear methods can be developed, optimized, and analyzed. Nonlinear methods are thus being applied to address many of the most interesting and challenging signal processing problems.

The evolution in nonlinear methods is also demonstrated by the growth of the IEEE-EURASIP Nonlinear Signal and Image Processing (NSIP) workshop. This biennial workshop was most recently held in the Inner Harbor of Baltimore, Maryland, USA, on June 3–6, 2001. The workshop attracted nearly 200 participants from around the globe and outstanding contributions from authors working on a wide array of topics. The workshop papers were exceptional in both breadth and depth.

To make the results of the NSIP workshop more widely available, the EURASIP JASP has dedicated two issues to the topic of Nonlinear Signal Processing. These issues feature expanded versions of NSIP papers. This first issue features 11 papers covering topics that include adaptive filters, communications, and biomedical applications and that build upon the theories of morphology, higher order statistics, and fuzzy relations. Although a full appreciation for the contributions in each paper can only be obtained through a careful reading of the article, a brief summary of the respective contributions is given next.

The first two papers consider nonlinear filtering theory. In the contribution by Tareq Y. Al-Naffouri and Ali H. Sayed, a unified approach to the mean-square analysis of adaptive filters with arbitrary error nonlinearities in their update equations is presented. The method, based on a fundamental energy conservation relation that holds for a large class of adaptive filters, offers new stability and convergence results in addition to the general advantages of a unified approach. The second paper considers the generalization of nonlinear filters through the use of fuzzy relations. In their contribution, Kenneth Barner, Yao Nie, and Wei An utilize fuzzy ordering and fuzzy order statistics to include information on sample spread in median, weighted median, and RCRS filters. The results show that the more general fuzzy ordering leads to improved performance in image noise smoothing applications.

The next two papers continue the theme of image processing. The first of these papers utilizes morphological methods to address image filtering and segmentation. By using morphological residues and the concept of granulometry,
The wide array of theories, methods, and problems addressed in these papers demonstrates the wide applicability of nonlinear methods. Next month in the second special issue on Nonlinear Signal Processing and Applications, an additional set of papers will further substantiate the depth and performance of nonlinear methods. We hope that you find these papers instructive and enjoy reading them as much as we have enjoyed putting the special issues together.

Kenneth E. Barner
Gonzalo R. Arce
Ilya Shmulevich
Editorial 191

Gonzalo R. Arce received the Ph.D. degree in electrical engineering from Purdue University, West Lafayette, IN, USA. He then joined the Department of Electrical and Computer Engineering at the University of Delaware, where he is currently Professor and Chairman. He is a frequent consultant to industry and government. His research interests multimedia communications and include digital communications, security, and electronic imaging. He holds three U.S. patents and is a Fellow of the Center for Advanced Studies at the University of Delaware. Dr. Arce has served as Associate Editor of the IEEE Transactions on Signal Processing, as Guest Editor in the IEEE Transactions on Image Processing, and is on the editorial board of the EURASIP Journal of Applied Signal Processing. He has served as Guest Editor of Optics Express of the Optical Society of America, and is a founding member of the Nonlinear Signal and Image Processing Board. He has served as Chair, Co-Chair, and in the advisory committee of several conferences in nonlinear signal processing. He is a member of the Digital Signal Processing Technical Committee of the IEEE Circuits and Systems Society. Dr. Arce is a Fellow of the IEEE for contribution to the theory and applications to nonlinear signal processing.

Ilya Shmulevich received his Ph.D. degree in Electrical and Computer Engineering from Purdue University, West Lafayette, IN, USA, in 1997. In 1997–1998, he was a postdoctoral researcher at the Nijmegen Institute for Cognition and Information at the University of Nijmegen and National Research Institute for Mathematics and Computer Science at the University of Amsterdam in The Netherlands, where he studied computational models of music perception and recognition. In 1998–2000, he worked as a senior researcher at the Tampere International Center for Signal Processing at the Signal Processing Laboratory in Tampere University of Technology, Tampere, Finland. Presently, he is an Assistant Professor at the Cancer Genomics Lab at the University of Texas M.D. Anderson Cancer Center in Houston, TX. His research interests include computational genomics, nonlinear signal and image processing, computational learning theory, and music recognition and perception.

Giovanni L. Sicuranza is Professor of Signal and Image Processing and head of the Image Processing Laboratory at the Dipartimento di Elettrotecnica Elettronica Informatica, University of Trieste (Italy), where he has given courses on analog circuits, digital circuits, and digital signal and image processing. He was also a teacher in European courses on image processing and analysis, and the organizer of the EURASIP course on “Linear and Nonlinear Filtering of Multidimensional Signals” (Trieste, Italy, 1990). His research interests include multidimensional digital filters, polynomial filters, processing of images and image sequences, image coding, and neural networks for signal processing. He has published a number of papers in international journals and conference proceedings. He contributed chapters for four books and is the co-editor of the books “Multidimensional Processing of Video Signals,” Kluwer Academic Publisher, 1992 and “Nonlinear Image Processing,” Academic Press, 2001. He is the co-author of the book ”Polynomial Signal Processing,” J. Wiley, 2000. Dr. Sicuranza has been a member of the technical committees of numerous international conferences and Chairman of the VIII European Signal Processing Conference, EUSIPCO-96 (Trieste, Italy, 1996). He is an Associate Editor of “Multidimensional Systems and Signal Processing” and a member of the editorial board of “Signal Processing” and “Display and Imaging International Edition.” Dr. Sicuranza has served as a project manager of ESPRIT and COST research projects funded by the European Commission and as a consultant to several industries. He is currently a member of the Administrative Committee of the European Association for Signal, Speech and Image Processing (EURASIP) and the IMDSP Technical Committee of the IEEE Signal Processing Society. He has been one of the founders and the first Chairman of the Nonlinear Signal and Image Processing (NSIP) Board of which he is still a member.